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EXECUTIVE SUMMARY

Background

Running performance often is used to evaluate aerobic
capacity. A previous review addressed the question “What is the
relationship between distance and validity?” Bioenergetic models
of running performance based on established physiological
principles suggested that performance on longer runs would always
yield more valid estimates than performance on shorter runs. The
cumulative evidence from 122 studies contradicted this
expectation. Validity increased with distance for shorter runs,
but was constant for distances 22km. Also, validity was lower for
fixed-time runs that were <12 min duration than for fixed-times
212 min.

Objective

This report was undertaken to determine whether the initial
findings could be replicated.

Approach

The published literature was searched to identify studies
of cardiorespiratory threshold measures (e.g., ventilatory
threshold, anaerobic threshold) and running performance. A meta-
analysis was conducted on reported correlations between VOzn.x and
performance extracted 74 correlations from 39 studies. The
analyses cross-validated a set of statistical models initially
developed and tested in the earlier review.

Results

The earlier findings replicated well. The model with
increasing validity up to 2 km or 12 min and constant validity
from those criterion points onward was the best representation of
the data. An earlier finding that fixed-time run tests (e.g., a
12-min run) provided better estimates of aerobic capacity than
fixed-distance run tests (e.g., 5 km) also replicated (r = .807
vs. r = .706).

Conclusions

Run tests should be at least 2 km in distance or 12 min in
duration to maximize validity as indicators of aerobic capacity.
Increasing distance or time beyond these minimum values does not
improve run test validity as an indicator of VOzmx. Fixed-time
tests have higher average validity than fixed-distance tests, so
a 12-min run test will maximize validity while minimizing demands
on the runners.

ii
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Running performance often is used to evaluate aerobic
capacity. A previous review indicated that the validity of
running performance increased with distance up to 2 km; validity
was constant from 2 km onward (Vickers, 2001).1!

Vickers’s (2001) review was undertaken to address several
questions. Do longer runs provide better estimates of aerobic
capacity? Can the relationship between distance and validity be
quantified? What is the shortest test that yields acceptable
validity? How much is gained by increasing the test length beyond
this minimum? The expectation was that the first two questions
would be answered affirmatively and that the second two could be
answered by constructing a simple mathematical model relating run
distance to wvalidity.

The anticipated answers to the questions posed in the
initial review were based on empirical and theoretical
considerations. Several studies have shown higher validity for
longer runs (Burke, 1976; Farrell, Wilmore, Coyle, Billing, &
Costill, 1979; Shaver, 1975; Weyand, Cureton, Conley, Sloniger, &
Liu, 1994). Mathematical models of the bioenergetics of running
provide a theoretical explanation for this trend (Capelli, 1999;
di Prampero et al., 1993; Ward-Smith, 1999). These models suggest
that validity will increase indefinitely with distance. However,
the rate of increase will be slower as distance increases.

The review results were unexpected. The fact that wvalidity
only increased up to 2 km meant that there was a range of run
distances for which the relationship was not strictly increasing
as expected. Instead, the relationship would be characterized
mathematically as nondecreasing. This observation is critically
important when modeling the validity of run tests. No model,
whether linear, curvilinear, or nonlinear, that predicts higher
validity coefficients for longer tests will fit the data.

A piecewise (PW) model was formulated to represent the
data. The model was piecewise because separate equations
predicted validity for runs above and below the 2-km threshold.
For runs less than 2 km, the predicted validity was determined by
the logarithm of the distance. For runs of 2 km or longer, the
prediction was a constant. Each range of predictions was one
piece of the model.

1Validity is the appropriateness of the interpretation of a test score
(American Psychological Association, 1985). Most tests can be
interpreted more than one way and, therefore, have more than one
validity. As used in this paper, validity refers solely to the
interpretation of run test performance as an indicator of aerobic
capacity. In this context, the term “validity coefficient” refers to
the correlation between run test performance and maximal oxygen uptake
capacity.
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The PW model answered the original questions. If the
minimum acceptable validity for a run test is r = .70, 2 km is
the minimum run distance. The shortest fixed-time test would be
12 min. Adding distance or time to these minimum values does not
increase test validity.

The prior review has two major implications. First, the
results defined empirical criteria for classifying tests as
endurance runs. The minimum criteria were 2 km or 12 min. Any run
meeting either criterion is an endurance test. Although the
validity of fixed-distance tests and fixed-time tests differed,
the data indicated validity was constant within each category.

Second, the evidence provided an empirical basis for
recommending one run test as the best option for estimating
aerobic capacity. Fixed-time endurance tests produced higher
validity coefficients than fixed-distance endurance tests. The
reason for the difference was not clear, but fixed-time tests
might increase the likelihood that runners will adopt the
strategy of running at a constant pace throughout the test. This
strategy yields optimal performance (Fukuba & Whipp, 1999).
Whatever the basis for the difference, the best test for
estimating aerobic capacity would be the shortest fixed-time
endurance test. This test will yield the highest validity with
the least effort and time required on the part of the test
takers. The test also is valid for individuals who might have
trouble running longer times or meeting a minimum distance
requirement (Sidney & Shepard, 1977). Considering these criteria,
the best run test would be a 12-min timed run.

Neither of the most important implications of the prior
findings was anticipated when the review was undertaken.
Unexpected findings should be viewed with skepticism until tested
further. Replication is a constructive response to skepticism.
This review, therefore, attempted to replicate the earlier work.
The initial data set was extended by conducting a new literature
search focused on physiological threshold variables as predictors
of running performance rather than maximal aerobic capacity. The
extended search identified 39 studies that reported 74 maximal
oxygen uptake (VOumx) running performance correlations that were
not included in the initial review. These data were used to
replicate and cross-validate the original findings.

Methods
Literature Search
The literature search had three primary elements. First,
the PubMed® database was searched using “threshold” and “running”

as the key words. The general term threshold was used in the hope
that it would identify articles that dealt with various
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thresholds in the physiology literature. These included
ventilatory threshold, lactate threshold, and anaerobic
threshold.

Articles identified in the PubMed search were examined to
determine whether they included useful data. The reference lists
for articles that contained at least one useful correlation were
examined to identify other studies that might report VOy,~running
performance correlations. The references identified in this
process were compared with the list of articles covered in the
earlier review (Vickers, 2001). New articles were examined to see
whether they contained results that could be used in this review.
This step comprised the ancestry review for the present work.

The reference catalog at San Diego State University was
searched to identify dissertations and theses involving running.
The list was compared with the citations in Vickers (2001) to
determine which work had been examined previously. Those
dissertations and theses not covered in the earlier review were
examined to see whether they reported either correlations that
would be used in this review or individual data that could be
used to compute correlations.

The literature search identified 39 studies listed in
Appendix A. These studies reported results from 50 distinct
samples. The samples included 1,131 total participants who
produced 1,769 running performance results. The outcome was a set
of 74 correlations, 56 from published sources, including books.
The other 18 correlations were from theses and dissertations. The
average sample size for the 74 correlations was n = 23.9.

Data Extraction

The information extracted from each report consisted of the
sample size, the type of run test (fixed-distance or fixed~time),
the distance run, the average run time, and the VOzmax—running
performance correlation. Performance was recorded a number of
different ways in different studies. Performance on fixed-
distance tests was usually recorded as a run time, but sometimes
was represented by average running velocity. Performance on
fixed-time tests typically was recorded as distance, but
sometimes was reported as a predicted VOzmax. VOzmax predictions
usually were computed using equations that involved only run
distance. However, in some cases the predictions were based on
multivariate equations with other predictors, such as weight or
gender.

The signs of correlations with run time as the performance
criterion were reversed so that correlations would have
comparable meaning for all studies. For every other criterion,
higher values indicated better performance. The correlations,
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therefore, were nearly all positive. In contrast, lower scores
indicated better performance, and nearly all correlations were
negative when run time was the criterion. Reversing the signs for
these correlations meant that a positive correlation indicated
how strongly VO, was related to good performance for all
studies.

A separate record was constructed for each run test in a
study. Thus, a study that included 1,500-m, 5-km, and 10-km runs
produced 3 records, one for each distance. Sample attributes were
duplicated on each record. Each record was treated as a separate
case in the analysis. This decision meant that the cases analyzed
were not entirely independent, thereby introducing statistical
complexities for significance testing (Becker & Schram, 1994;
Steiger, 1980). The common meta-analytic practice of averaging
effect sizes to produce a single value for each sample was not
suitable for the present purposes. Averaging would have prevented
meaningful analysis of the relationship between validity and test
length.

Analysis Procedures

As Rosenthal and DiMatteo (2001) noted, the underlying
logic and basic computational procedures used in meta-analysis
are the same as those used in the analyses of primary data. The
basic summary statistics are weighted average correlations and
computations of variance about those averages. In every analysis,
the observed correlations are compared with predicted values
based on the model. The estimated variance for the model provides

a x? test of statistical significance.?

The basic analysis followed the procedures in Chapter 11 of
Hedges and Olkin (1985). Olkin and Pratt’s (1958) formula was
used to correct the correlations for sample size bias. Fisher’s
r-to-z transformation was applied to normalize the distribution
of the corrected correlations (Hays, 1963). The transformed
values are labeled zyriy to indicate that they represent z value
of the unbiased Fisher-transformed correlation for the ith
sample. The zyr) were the dependent variables in analysis of
variance and regression procedures that weighted each observation
by (n; - 3), where n; is the sample size for the ith correlation.
Using this weighting, the sums of squares reported for the

analyses are % values that can be used to test hypotheses.

Three models were evaluated in both the replication and the
cross-validation:

’significance tests based on the x2 values should be interpreted with
some caution given that not all of the validity coefficients were
independent. However, only a small proportion of the total observations
involved dependent coefficients. Note also that significance tests were
not the basis for choosing the final model from the analyses.
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A. The regression model used the logarithm of distance to predict
Zyr(yy values. This model is referred to as the LogDist model to
indicate the predictor that was used in the regression.

B. The test-by-test (TxT) model predicted the average value for
each of 9 groups. Seven groups represented specific distances
represented in the data set by 3 or more correlations (1 mile,
2 km, 1.5 mile, 3 mile, 5 km, 10 km, marathon). Miscellaneous
short (<1,850 m; n = 7) and long (>1,850 m; n = 9) runs were
general groups that included all correlations for distances
represented by just 1 or 2 correlations in the data set. This
model was constructed using the same rules as the TxT model in
Vickers (2001). The specific groups included differ because of
differences in the data available for the analyses (see
Appendix B for original model).

C. The PW model developed by Vickers (2001) regressed 2zyp) on the
logarithm of distance for runs <2 km, then estimated a

constant value for runs 22 km.

This review considered only these 3 models because they
were the most promising of a larger set of models evaluated in
Vickers (2001). The TXT model provided the best overall fit to
the data in the initial review. This model minimizes the squared
error in predictions for each run distance represented by 3 or
more correlations. The TxT model, therefore, provides explanatory
power that approaches the maximum possible value when distance is
used as a predictor of validity. The LogDist model did not fit
the data as well as either the PW or TxT models. However, the
predicted values in this model increase continuously with
distance. The rate of increase per unit distance decreases as
distance increases. These attributes are characteristic
predictions from bioenergetic models. Thus, this model was
included as an approximation to predictions from bioenergetic
models of running performance.

Vickers (2001) adopted the PW model over the TxT and
LogDist models and several other models after weighing three
criteria: explanatory power, number of parameters in the model
(i.e., parsimony, cf., Popper, 1959), and relationships to
physiological constructs. Considering the 3 models evaluated
here, the regression model was simple and clearly linked to
existing constructs but had the least explanatory power. The TxT
model had the most explanatory power, but this model required
many more parameters than either alternative model. Further, the
pattern of mean differences as a function of distance was
irregular and did not have a clear relation to physiological
processes. The PW model provided intermediate explanatory power,
but it combined parametric parsimony with a reasonable
explanation in terms of known physiological mechanisms. Constant
validity for endurance tests could be explained by concepts such
as anaerobic threshold or critical power. The PW model also had
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the pragmatic value that it corresponded well to a simple graphic
representation of the data.

The 3 models retained from the initial review were compared
in analyses that first replicated the original model selection
process. For these analyses, parameter values for the models were
estimated from the present data. The fit of each model was
evaluated using the same criteria as in the initial review. This
replication was undertaken to explore the possibility that the
relative ordering of the models was specific to the initial data
set.

The replication analysis was followed by cross-validation
analyses. In these analyses, the model parameters were fixed at
the values estimated in Vickers (2001). The parameter values are
shown in Appendix B. The cross-validation represented an
important shift in the work from exploratory analysis to
confirmatory analysis.

All analyses were conducted using SPSS-PC (SPSS, Inc.,
1998a,b). The weighted GLM and REGRESSION procedures were used.
When correlations are appropriately transformed and weighted as
previously described, the results include sums of squares that

provide appropriate y? values for testing meta-analytic
hypotheses (Hedges & Olkin, 1985).

Parsimony-adjusted goodness-of-fit was used to compare
models. The Tucker and Lewis (1973) index (TLI) was the basic
goodness-of-fit indicator (cf., Arbuckle & Wothke, 1999; Bentler
& Bonett, 1980; or Bollen, 1989; for discussion of goodness-of-
fit indices). The TLI indicates what proportion of the greater
than chance variation in correlations is accounted for by a
model. Mulaik et al.’s (1989) parsimony adjustment was applied to
the TLI to allow for the fact that more complex models almost
always provide a better absolute fit to the data than simpler
models. The final model criterion, therefore, was the parsimony-
adjusted Tucker-Lewis Index (PTLI).

Hoelter’s (1983) critical N was used to guard against
assigning undue importance to small effects. Even trivial effects
can be statistically significant given a large enough sample size
(Rosenthal & Rosnow, 1984). Hoelter (1983) proposed that the
potential for misleading significance tests be reduced by
determining the smallest sample size for which an observed
difference would be statistically significant. Hoelter (1983)
labeled this sample size the critical N and suggested that any
effect with critical N = 200 was too small to be theoretically or
practically important. This frame of references has been used
when evaluating the present findings.
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Table 1. Fit of Models Estimated From the Current Data

Model Residual
Model af 1’ y TLI PTLI
LogDist 1 2.30 116.99 .010 .010
TxT 8 22.06 97.24 .163 .144
PW 2 11.76 107.53 .162 .157

Note. See text for model definitions. df = degrees of freedom for
the model. Each model is based on 67 correlations (66 df maximum)

with a total %* of 119.30.

Results

Figure 1 plots zyr) as a function of the logarithm of
distance for Vickers’s (2001) data (Figure 1(a)] and the present
data [Figure 1(b)]. The figure includes LOESS plots (Cleveland,
1979) for the data. The most important aspect of Figure 1 is that
both LOESS plots are flat for distances 22 km. The horizontal
reference line is Vickers’s (2001) PW prediction for endurance
runs (i.e., zy’ = .9026). The flat portion of the LOESS curve for
for the present data is slightly lower than, but approximately
parallel to this reference line.

Figure 1 also shows increasing zyr;) for runs <2 km in both
data sets. This trend is poorly defined for the present data.
Only a few data points are available for short runs. The
available data points are largely restricted to the range of
1,500 m to 1,609 m. The two curves are similar for the data that
are present.

Model Replication

Fitting the models to the data replicated the earlier
findings (Table 1). The LogDist model again had the least
predictive power. The variation explained by the PW model was
statistically significant (y? = 11.76, 2 df, p < .003) but the
TxT model explained more (y® = 22.06, 8 df, p < .005).

Some findings from the earlier review did not replicate.
The LogDist model was statistically significant in the prior
work, but not in these data (x2 =2.30, 1 df, p > .129). The TxT
model was significantly better than the PW model in the prior
review, but not in these analyses (Ay? = 10.30, 6 df, p > .112).
Finally, the PW PTLI previously had been smaller than the TxT
PTLI (.363 vs. .382), but was larger (.157 vs. .144) in these
analyses.
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Table 2. Cross-Validation Statistics for Model

Residual Difference

Model 2 x? PTLI
LogDist 125.38 8.38 <.000
TXT 122.38 25.15 <.000
PW 109.70 2.168 .184

Note. All models have 67 df because no parameters were estimated.
See text for definition of table entries.

Individual elements of the PW model replicated well.
Shorter runs (i.e., <2 km) had lower average validity than longer

runs (x> = 9.09, 1 df, p < .001). The lack of association between

distance and validity for longer runs (r = -.041, x2 = 0.172, 1
df, p > .678) replicated a second PW model element.

The only PW model component that did not replicate clearly
was the significant relationship between distance and validity
for short runs (x> = 2.68, 1 df, p > .101, for the present data).
However, the same trend was present and approached significance
(p < .051) using a one-tailed test to allow for the fact that the
direction of the relationship was known. Note also that there
were only a few short tests (n = 13), most of which represented a
narrow range of distance (9 of 13 either 1,500 m or 1,609 m).
Taken in context, this element of the PW model replicated
reasonably well within the constraints of the data.

Cross-Validation

Table 2 summarizes the results of the cross-validation
analyses. The residual x? values reported in the table are the
result of fitting the corresponding Vickers (2001) model to the
present data. The difference ¥ is the difference between the
cross-validation fit and the replication fit of the model (see
Table 1). PTLI was computed for each model with the null model %2
= 119.30.. This figure was the overall y® for the set of validity
coefficients. Model y? values can be greater than this reference
point because applying the parameter estimates from the earlier
review to the present data can produce differences between
predicted and observed correlations that are larger than the
differences between the observed values and the mean correlation
for the present data. The PTLI is negative when this outcome is
obtained.

Cross-validation analyses clearly supported the PW model.
First, the fit of the PW model (x® = 109.70) was 12.5% better
than the LogDist model (x® = 125.38) and 10.4% better than the
TxT model (y® = 122.38).
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Robustness of the model parameters was another indication
of how well the PW model cross-validated. The difference in fit
between replication and cross-validation was not significant for
the PW model (x? = 2.17, 3 df, p > .538). This result indicates
that the original parameter values for the model were very close
to the estimated values in the replication analysis. Sample-
specific parameters were significantly better than the replicated
values for the LogDist (x> = 8.38, 3 df, p < .039) and TxT (¥* =
28.68, 14 df, p < .012) models.?

The goodness-of-fit index was the third reason to prefer
the PW model to the alternatives. The PW PTLI was positive; the
LogDist and TxT PTLI were negative. The negative PTLI indicated
that bias in the cross-validation estimates (i.e., the tendency
for predictions to err consistently in the same direction) was
sufficient to offset whatever predictive power the models had for
the new data.

The goodness-of-fit statistics produced another indication
that the PW model was robust. The cross~-validation PTLI was
larger than the replication PTLI (.184 vs. .157). The reversal
occurred because the lost degrees of freedom associated with
estimating sample-specific parameters in the replication model
more than offset the statistically nonsignificant gain in
predictive accuracy.’

Detailed Cross-Validation of PW Model

The cross-validated PW model fit all of the data reasonably
well. The most important element of the model was the prediction

that zy’ = .9026 for runs 22 km because these runs comprised

3The TxT cross-validation was based on predictions for 11 of 24
groups in the earlier review. The estimates from the earlier
model were applied to all tests that fell in 1 of the 24 distance
categories in that model. Thus, some tests classified as
miscellaneous in the present review had distance-specific
predictions.

4Negative PTLI values were obtained when cross-validation y?
>baseline y?. Biased cross-validation predictions produced this
outcome. Bias is a consistent tendency toward underestimation or
overestimation. The average bias (weighted by n - 3) was +.059
for the TXT model, +.037 for the LogDist model, and +.027 for the
PW model. The biases were small [critical N (p < .05) 1,107,
2,810, and 5,273 for the TxT, LogDist, and PW models,
respectively]and differed trivially. The critical N for the
largest difference was 7,506. Bias added 10.70 to the PW %7,

11.90 to the Txt %2, and 16.35 to the LogDist %°.

10
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5/6ths of the data. The weighted average in the present data was
zye’. = .8781. The critical N for the difference is 6,403. After
back-transforming the z values, the difference in the estimated
validity coefficients was r = ,7176 versus r = .7055.

Predictions for short runs were less important for the
overall fit of the model because there were fewer short runs.
Here, too, the predictions were accurate. The 800-m prediction (n
= 1 correlation) was slightly high (+.011). The 1-km (n = 2)
prediction was slightly low (-.017). The l-mile (n = 4)
prediction was very close to the observed value (+.002). The
largest discrepancy between observed and predicted value was
+.062 for the 1,500-m run (n = 2). The critical N for the 1,500-m
difference was 1,003. The critical N would be substantially
higher for each other distance because of the smaller
discrepancies. The overall model fit, therefore, reflected good
fit at each cross-validated point.

Fixed Versus Random Effects

The replication analyses strengthened the choice of the PW
model. Therefore, fixed- and random-effects versions of this
model were compared. The fixed-effects model (x® = 109.70) had
slightly better predictive accuracy than the random-effects model

(x> = 115.18) when cross-validated.
Best Estimate Model

The prior analyses indicated that the fixed-effects PW
model was the best representation of the data. The present data
were combined with those from Vickers (2001) to estimate the
parameters of that model using all of the data. The resulting PW
model was:

(0.225*L) - .0615
.8960

If distance <2 km, z’
If distance 22 km, 2z’

I

where z’ is the Fisher transformation of the unbiased correlation
coefficient and L is the logarithm of distance. Pooling the data
left the slope of the regression for short runs unchanged at
0.225. Pooling reduced the regression intercept slightly from the
earlier value of -.0036 to -.0615. Pooling reduced the estimated
value for long runs from .8960 to .9026 (critical N = 88,195).
After back-transformation, the revised estimate of the validity
coefficient was r = .714 compared with r = .718 in the initial
review. The estimated validity coefficient applied equally well
to all distances as indicated by the fact that distance and 2zygr;
were independent (r = -.009) from 2 km upward.

11
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Fixed-Time Tests

The data included 7 fixed-time correlations. Five of these
correlations were for runs 212 min. The average correlation for
those 5 tests was r = .807. This value was significantly (y? =
6.42, 1 df, p < .012) larger than the average for fixed-distance
tests in this review (r = .706). Both values were very similar to
the estimates derived in the prior review (fixed-time, r = .793;
fixed-distance, r = .718). Critical Ns for the differences
between the two reviews were N > 2,542 for fixed-time tests and N
> 6,508 for fixed-distance tests. The pooled significance for the
difference between the fixed-time and fixed-distance correlations
was p < .0001 by the method of adding probabilities (Rosenthal,
1978) . The pooled average for fixed-time tests was r = .798.

Discussion

This extension of Vickers’s (2001) review strongly
supported the PW model relating run distance to validity. The
LOESS plot of validity as a function of distance provides the
most direct indication of support for the model. This graphic
representation showed increasing validity for short runs and
constant validity coefficients for long (i.e., 22 km) runs. These
two trends are the essential elements of the PW model. Although
this replication included relatively few short runs, the LOESS
lines clearly were very similar.

Replication provided formal quantitative support for the
original model selection process. The PW model once again had
less predictive power than the TxT model and more predictive
power than the regression model. Beyond this basic similarity,
however, there were differences between the initial review and
the present replication. Where Vickers (2001) found that the TxT
model had significantly greater predictive accuracy than the PW
model, the difference was not significant in this replication.
Where Vickers (2001) found that the PTLI for the TxT model was
slightly larger than the PTLI for the PW model, the replication
reversed this ordering. Thus, 2 of 3 criteria that gave reason to
consider choosing the TxT model over the PW model in the initial
review were reversed in this replication. The only remaining
criterion favoring the TxT model was the better absolute fit of
the model to the data. The PTLI comparisons indicate that
absolute fit is a weak criterion, given the substantial
difference in complexity between the PW and TXT models. Applying
the same criteria used in the earlier review, the results of this
replication would lead to the adoption of a PW model.

Cross-validation underscored the replication trends. The

explanatory power of the PW model was more than 10% greater than
either competing model. The fact that the cross-validation fit of

12
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the PW model was nearly as good as the fit in the replication
analyses indicated that the model parameters were: robust. In
fact, the difference in fit was not statistically significant,
and the cross-validation PTLI for the PW model was larger than
the simple replication PTLI for this model. The failure of the
other two models to cross-validate is underscored by the fact
that the PTLI was negative for both competing models.

These findings provide strong empirical support for the PW
model. The cross-validation results are particularly noteworthy.
These analyses provided a very strong test of the original
models. The cross-validation test of a model was a stringent
criterion because the parameters were fixed at specific values
derived in the earlier review. This aspect of cross-validation
analyses meant that a specific value was predicted for each
validity coefficient in the cross-validation analyses. These
point predictions increased the risk of failure for the model.
Observed values had to be close to the specific predicted values
to avoid a significant misfit between the data and the model.
This requirement contrasts with null hypothesis testing
procedures that treat any observed value that is significantly
different from zero as support for a model. Cross-validation
requires that the typical finding lie within the 95% confidence
interval around the predicted value given the sample size. This
confidence interval will be narrower than the range of all values
that differ significantly from zero. The greater constraint on
the range of data that indicate acceptable fit of the model makes
the confirmatory cross-validation more likely to fail than the
exploratory test of a null hypothesis model. In this sense, the
cross-validation was a stronger test of the models (Meehl, 1990).

The risks associated with cross-validation were clearly
evident in the results of these analyses. Two of the 3 models
cross-validated so poorly that they had negative PTLI values.
Only the PW model produced a positive PTLI. The fact that the fit
of the cross-validated PW model was not significantly different
from the fit of the PW model with sample-optimized parameter
values further strengthened this model. This close fit between
the data and specific point predictions for each observation in
the data set is what Meehl (1990) refers to as “a darned strange
coincidence.” Such coincidence should strengthen faith in the
model.

Several characteristics of the PW model could account for
its cross-validation success. Parsimonious models provide more
precise parameter estimates (Bentler & Mooijaart, 1989). Precise
estimates should increase accuracy when applied to new data
because they are less likely to be substantially different than
the population parameters that are being estimated. A second
point to consider is the fact that parsimonious models have less
opportunity to capitalize on chance. Fewer parameters are fitted,
so it is less likely that unnecessary parameters will be included
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by chance. The addition of parameters that represent chance
trends in the initial data will increase error when applied to
new data that do not include those chance trends. Having fewer
parameters also reduces the likelihood that chance observations
will lead to serious errors in the estimation of parameters that
truly belong in the model.

One characteristic of the PW model that may have accounted
for its cross-validation success is particularly noteworthy. The
PW model was based on fitting mathematical functions to the data.
This statement was true even for runs of 2 km or longer. In those
cases, the function was a constant, but that constant was
essentially the intercept in a regression analysis with a zero
slope. As a result, the prediction for any given distance is
influenced by the pattern of data for other run distances. This
dependency on the overall pattern of data means the model
“borrows strength” from other evidence in the data when
estimating the value at a given spot (National Research Council,
1992). The borrowing effect should help correct errors that arise
when just a few data points are available to estimate the
correlation for a given run distance. In such cases, a single
data point that was seriously in error could significantly bias
the estimate for that distance. Fitting a function to the data
yields estimates that smooth the curve by making the estimate
consistent with nearby values rather than relying just on the
data for that specific distance.

This review also replicated the difference between fixed-
time and fixed-distance tests. Fixed-time endurance runs were
more valid than fixed-distance endurance runs. The estimated
validity for each type of test was very similar to that obtained
in the prior review. On the whole, a fixed-time endurance test
increases validity .084 relative to a fixed-distance endurance
test (fixed-time, r = .798; fixed-distance, r = .714). The
absolute difference is modest, but simple magnitude comparisons
can be misleading. For example, if a run test were to be used to
decide who meets a pass-fail criterion (e.g., 50th percentile of
a distribution), the fixed-time test would classify 8.4% more
people correctly (Rosenthal & Rubin, 1978).

The replication and cross-validation analyses reinforce the
surprising answer to several questions addressed in Vickers’s
(2001) review. A 12-min run is the best option for estimating
aerobic capacity. The standard error of estimate (SEE) for
aerobic capacity using this test is ~3.8 ml/kg/min.* Laboratory
VOomax test precision is ~3.0 ml/kg/min when the same protocol is
repeated twice or more (Froehlicher et al., 1974; Katch, Sady, &
Freedson, 1982; Safrit, Hooper, Ehlert, Costa, & Patterson,

5SEE = SD * Y(1 - r?) where SD = 6.24, the weighted average SD for all
samples in the two reviews and r = .798, the average correlation
between the 12-min run and the VO,,.x assessments.
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1988). Estimates from a 12-min run will have an SEE ~25% greater
than the reference standard. The increase is not trivial, but it
may be acceptable in many situations.®

This review suggests that one factor that might bias meta-
analytic findings is unimportant in the present research domain.
Increasing the scope of the literature review had little effect
on the estimated validity coefficients. It is very unlikely that
even the 347 correlations examined in the combined reviews
exhaust the literature in this area. However, the fact that two
different search strategies produced very similar results makes
it less likely that omitted studies would change the results
substantially. The reviews produced similar estimates despite
differences in the proportional representation of published and
unpublished studies. This outcome suggests that publication bias
is not a major factor in this domain.

The preceding conclusion is subject to one critically
important qualification. The inference is based on trends
averaged across many types of people. The samples included males
and females, young and old, and athletes and untrained
individuals. Previous reviewers have cautioned that findings may
not generalize across populations (Baumgartner & Jackson, 1982;
Safrit et al., 1988). These cautions are still relevant. Figure 1
clearly shows that correlations vary widely for runs 22 kn.
Population differences may be one source of this variation.

The sources of variation in the validity of endurance run
tests will be the topic of a companion review (Vickers, in
preparation). This replication of Vickers’s (2001) earlier
findings sets the stage for a meaningful assessment of this topic
by providing empirical criteria defining endurance runs. Runs 22
km or 212 min share a common validity within test type. The run
test categories thus defined can both be classified as endurance
runs. With this point established, analysis of the variation in
validity coefficients for endurance runs can determine whether
validity generalizes for endurance runs.

6The standard deviation specified for VO, tests applies to repetitions
of a single protocol. Differences between protocols would be a more
appropriate frame of reference. The reference SEE for that comparison
would be larger because the SEE would include variance attributable to
protocol differences.
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Logarithm of Distance (LogDist) Model:

Appendix B
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Cross-Validation Models

ZUF(i)’ = 0.240*L -.013

Test-by-Test (TxT) Model:

Distance (m)

800

1000

1500

1609

2000

2414

3200

4827

5000
10000
21100
42200
Misc Short
Misc Long

Zuse1y’

.500
1.024
.744
.732
1.017
1.075
.832
.806
.932
.715
.880
1.015

Piecewise (PW) Model:

If (distance < 2000 m) zyri’ =
2000 m) ZUF(J'_), =

If (distance 2

Note. “L” indicates the

0.225*L -
.903

23

.036

logarithm of distance in meters.
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